Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
ACS Nano ; 18(19): 12168-12186, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38687976

RESUMO

Assessment of hypoxia, nutrients, metabolite gradients, and other hallmarks of the tumor microenvironment within 3D multicellular spheroid and organoid models represents a challenging analytical task. Here, we report red/near-infrared (NIR) emitting cell staining with O2-sensitive nanoparticles, which enable measurements of spheroid oxygenation on a conventional fluorescence microscope. Nanosensor probes, termed "MMIR" (multimodal infrared), incorporate an NIR O2-sensitive metalloporphyrin (PtTPTBPF) and deep red aza-BODIPY reference dyes within a biocompatible polymer shell, allowing for oxygen gradient quantification via fluorescence ratio and phosphorescence lifetime readouts. We optimized staining techniques and evaluated the nanosensor probe characteristics and cytotoxicity. Subsequently, we applied nanosensors to the live spheroid models based on HCT116, DPSCs, and SKOV3 cells, at rest, and treated with drugs affecting cell respiration. We found that the growth medium viscosity, spheroid size, and formation method influenced spheroid oxygenation. Some spheroids produced from HCT116 and dental pulp stem cells exhibited "inverted" oxygenation gradients, with higher core oxygen levels than the periphery. This contrasted with the frequently encountered "normal" gradient of hypoxia toward the core caused by diffusion. Further microscopy analysis of spheroids with an "inverted" gradient demonstrated metabolic stratification of cells within spheroids: thus, autofluorescence FLIM of NAD(P)H indicated the formation of a glycolytic core and localization of OxPhos-active cells at the periphery. Collectively, we demonstrate a strong potential of NIR-emitting ratiometric nanosensors for advanced microscopy studies targeting live and quantitative real-time monitoring of cell metabolism and hypoxia in complex 3D tissue models.


Assuntos
Nanopartículas , Oxigênio , Esferoides Celulares , Humanos , Esferoides Celulares/metabolismo , Esferoides Celulares/efeitos dos fármacos , Oxigênio/metabolismo , Oxigênio/química , Nanopartículas/química , Microscopia de Fluorescência , Raios Infravermelhos , Metaloporfirinas/química , Metaloporfirinas/farmacologia
2.
J Extracell Vesicles ; 13(4): e12421, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38545822

RESUMO

Extracellular vesicles (EVs) contain a plethora of biomolecules, including nucleic acids, with diverse diagnostic and therapeutic application potential. Although reverse transcription-quantitative PCR (RT-qPCR) is the most widely applied laboratory technique to evaluate gene expression, its applicability in EV research is challenged by the lack of universal and stably present reference genes (RGs). In this study, we identify, validate and establish SNRPG, OST4, TOMM7 and NOP10 as RGs for the normalization of EV-associated genes by RT-qPCR. We show the stable presence of SNRPG, OST4, TOMM7 and NOP10 in multiple cell lines and their secreted EVs (n = 12) under different (patho)physiological conditions as well as in human-derived biofluids (n = 3). Enzymatic treatments confirm the presence of SNRPG, OST4, TOMM7 and NOP10 inside EVs. In addition, the four EV-associated RGs are stably detected in a size-range of EV subpopulations. RefFinder analysis reveals that SNRPG, OST4, TOMM7 and NOP10 are more stable compared to RGs established specifically for cultured cells or tissues such as HMBS, YWHAZ, SDHA and GAPDH. In summary, we present four universal and stably present EV-associated RGs to enable normalization and thus steer the implementation of RT-qPCR for the analysis of EV-associated RNA cargo for research or clinical applications.


Assuntos
Vesículas Extracelulares , Transcrição Reversa , Humanos , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , RNA/metabolismo , Linhagem Celular , Células Cultivadas , Proteínas Centrais de snRNP/metabolismo
3.
STAR Protoc ; 5(1): 102863, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38421864

RESUMO

Despite optimal multimodal treatment including surgical resection, 50%-80% of high-grade soft tissue sarcoma (STS) patients metastasize. Here, we present a protocol for the generation and use of post-surgical minimal residual disease models to investigate metastatic relapse in STS patient-derived xenografts. We describe steps for orthotopic engraftment of high-grade STS patient-derived tumor tissue. We then detail procedures for primary tumor resection with broad, negative resection margins and follow-up until metastases using MRI. For complete details on the use and execution of this protocol, please refer to Fischer et al. (2023).1.


Assuntos
Sarcoma , Neoplasias de Tecidos Moles , Humanos , Neoplasia Residual , Xenoenxertos , Sarcoma/diagnóstico por imagem , Sarcoma/cirurgia , Sarcoma/patologia , Neoplasias de Tecidos Moles/diagnóstico por imagem , Neoplasias de Tecidos Moles/cirurgia , Neoplasias de Tecidos Moles/patologia , Imageamento por Ressonância Magnética
4.
J Extracell Vesicles ; 13(2): e12404, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326288

RESUMO

Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly.


Assuntos
Exossomos , Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Exossomos/metabolismo , Transporte Biológico , Biomarcadores/metabolismo , Fenótipo
5.
Clin Chem ; 70(1): 165-178, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175582

RESUMO

BACKGROUND: Substantial research has been devoted to elucidating the role of extracellular vesicles (EVs) in the different hallmarks of cancer. Consequently, EVs are increasingly explored as a source of cancer biomarkers in body fluids. However, the heterogeneity in EVs, the complexity of body fluids, and the diversity in methods available for EV analysis, challenge the development and translation of EV-based biomarker assays. CONTENT: Essential steps in EV-associated biomarker development are emphasized covering biobanking, biomarker discovery, verification and validation, and clinical implementation. A meticulous study design is essential and ideally results from close interactions between clinicians and EV researchers. A plethora of different EV preparation protocols exists which warrants quality control and transparency to ensure reproducibility and thus enable verification of EV-associated biomarker candidates identified in the discovery phase in subsequent independent cohorts. The development of an EV-associated biomarker assay requires thorough analytical and clinical validation. Finally, regulatory affairs must be considered for clinical implementation of EV-based biomarker assays. SUMMARY: In this review, the current challenges that prevent us from exploiting the full potential of EV-based biomarker assays are identified. Guidelines and tools to overcome these hurdles are highlighted and are crucial to advance EV-based biomarker assays into clinical use.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Bancos de Espécimes Biológicos , Reprodutibilidade dos Testes , Biomarcadores Tumorais , Neoplasias/diagnóstico
6.
EMBO J ; 42(24): e113590, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38073509

RESUMO

Cells secrete extracellular vesicles (EVs) and non-vesicular extracellular (nano)particles (NVEPs or ENPs) that may play a role in intercellular communication. Tumor-derived EVs have been proposed to induce immune priming of antigen presenting cells or to be immuno-suppressive agents. We suspect that such disparate functions are due to variable compositions in EV subtypes and ENPs. We aimed to characterize the array of secreted EVs and ENPs of murine tumor cell lines. Unexpectedly, we identified virus-like particles (VLPs) from endogenous murine leukemia virus in preparations of EVs produced by many tumor cells. We established a protocol to separate small EVs from VLPs and ENPs. We compared their protein composition and analyzed their functional interaction with target dendritic cells. ENPs were poorly captured and did not affect dendritic cells. Small EVs specifically induced dendritic cell death. A mixed large/dense EV/VLP preparation was most efficient to induce dendritic cell maturation and antigen presentation. Our results call for systematic re-evaluation of the respective proportions and functions of non-viral EVs and VLPs produced by murine tumors and their contribution to tumor progression.


Assuntos
Retrovirus Endógenos , Vesículas Extracelulares , Neoplasias , Animais , Camundongos , Vesículas Extracelulares/metabolismo , Linhagem Celular Tumoral , Diferenciação Celular , Células Dendríticas , Neoplasias/metabolismo
7.
J Extracell Vesicles ; 12(12): e12385, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38063210

RESUMO

Blood is the most commonly used body fluid for extracellular vesicle (EV) research. The composition of a blood sample and its derivatives (i.e., plasma and serum) are not only donor-dependent but also influenced by collection and preparation protocols. Since there are hundreds of pre-analytical protocols and over forty variables, the development of standard operating procedures for EV research is very challenging. To improve the reproducibility of blood EV research, the International Society for Extracellular Vesicles (ISEV) Blood EV Task Force proposes standardized reporting of (i) the applied blood collection and preparation protocol and (ii) the quality of the prepared plasma and serum samples. Gathering detailed information will provide insight into the performance of the protocols and more effectively identify potential confounders in the prepared plasma and serum samples. To collect this information, the ISEV Blood EV Task Force created the Minimal Information for Blood EV research (MIBlood-EV), a tool to record and report information about pre-analytical protocols used for plasma and serum preparation as well as assays used to assess the quality of these preparations. This tool does not require modifications of established local pre-analytical protocols and can be easily implemented to enhance existing databases thereby enabling evidence-based optimization of pre-analytical protocols through meta-analysis. Taken together, insight into the quality of prepared plasma and serum samples will (i) improve the quality of biobanks for EV research, (ii) guide the exchange of plasma and serum samples between biobanks and laboratories, (iii) facilitate inter-laboratory comparative EV studies, and (iv) improve the peer review process.


Assuntos
Líquidos Corporais , Vesículas Extracelulares , Reprodutibilidade dos Testes , Plasma
8.
Reproduction ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38063339

RESUMO

MicroRNAs (miRNAs), which can be carried inside extracellular vesicles (EVs), play a crucial role in regulating embryo development up to the blastocyst stage. Yet, the molecular mechanisms underlying blastocyst development and quality are largely unknown. Recently, our group identified 69 differentially expressed miRNAs in extracellular vesicles (EVs) isolated from culture medium conditioned by bovine embryos that either developed to the blastocyst stage or did not (non-blastocysts). We found miR-146b to be more abundant in the EVs derived from media conditioned by non-blastocyst embryos. Using RT-qPCR, we here confirmed the upregulation of miR-146b in non-blastocyst (arrested at 2-4 cell and morula stage) embryos compared to blastocysts (p<0.005), which coincides with the upregulation of miR-146b in EVs derived from the medium of these non-blastocysts. To evaluate a functional effect, bovine embryo culture media were supplemented with miR-146b mimics, resulting in significantly decreased embryo quality, with lower blastocyst rates at day 7 and lower total cell numbers, while the opposite was found after supplementation with miR-146b inhibitors, which resulted in reduced apoptosis rates (P < 0.01). Transcriptomic analysis of embryos treated with miR-146b mimics or inhibitors showed differential expression (P < 0.01) of genes associated with apoptosis, cell differentiation, and the RNA Pol II transcription complex, including WDR36, MBNL2, ERCC6l2, PYGO1, and SNIP1. Overall, miR-146b is overexpressed in non-blastocyst embryos and in EVs secreted by these embryos, and it regulates genes involved in embryo development and apoptosis, resulting in decreased embryo quality.

9.
J Extracell Vesicles ; 12(11): e12376, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37942918

RESUMO

Extracellular vesicles (EVs) in blood plasma are recognized as potential biomarkers for disease. Although blood plasma is easily obtainable, analysis of EVs at the single particle level is still challenging due to the biological complexity of this body fluid. Besides EVs, plasma contains different types of lipoproteins particles (LPPs), that outnumber EVs by orders of magnitude and which partially overlap in biophysical properties such as size, density and molecular makeup. Consequently, during EV isolation LPPs are often co-isolated. Furthermore, physical EV-LPP complexes have been observed in purified EV preparations. Since co-isolation or association of LPPs can impact EV-based analysis and biomarker profiling, we investigated the presence and formation of EV-LPP complexes in biological samples by using label-free atomic force microscopy, cryo-electron tomography and synchronous Rayleigh and Raman scattering analysis of optically trapped particles and fluorescence-based high sensitivity single particle flow cytometry. Furthermore, we evaluated the impact on flow cytometric analysis in the presence of LPPs using in vitro spike-in experiments of purified tumour cell line-derived EVs in different classes of purified human LPPs. Based on orthogonal single-particle analysis techniques we demonstrate that EV-LPP complexes can form under physiological conditions. Furthermore, we show that in fluorescence-based flow cytometric EV analysis staining of LPPs, as well as EV-LPP associations, can influence quantitative and qualitative EV analysis. Lastly, we demonstrate that the colloidal matrix of the biofluid in which EVs reside impacts their buoyant density, size and/or refractive index (RI), which may have consequences for down-stream EV analysis and EV biomarker profiling.


Assuntos
Vesículas Extracelulares , Humanos , Vesículas Extracelulares/fisiologia , Imagem Individual de Molécula , Biomarcadores , Linhagem Celular Tumoral , Lipoproteínas LDL
10.
Breast Cancer Res ; 25(1): 146, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993928

RESUMO

PURPOSE: The aim of the study was to compare the difference in survival between invasive ductal (IDC) and lobular carcinoma (ILC). METHODS: Data of patients (n = 1843) with a hormone receptor-positive, HER2-negative, pT1-3 IDC or ILC cancer without distant metastasis, treated at the Ghent University Hospital over the time period 2001-2015, were analyzed. RESULTS: ILC represented 13.9% of the tumors, had a higher percentage of pT3 and pN3 stages than IDC, lymphovascular space invasion (LVSI) was less present and Ki-67 was mostly low. 73.9% of ILCs were grade 2, whereas IDC had more grade 1 and grade 3 tumors. Kaplan-Meier curves and log-rank testing showed a significant worse DFS for ILC with pN ≥ 1 than for their IDC counterpart. In a multivariable Cox regression analysis the histologic tumor type, ductal or lobular, was a determinant of DFS over 120 months (IDC as reference; hazard ratio for ILC 1.77, 95% CI 1.08-2.90) just as the ER Allred score (hazard ratio 0.84, 95% CI 0.78-0.91), LVSI (hazard ratio 1.75, 95% CI 1.12-2.74) and pN3 (hazard ratio 2.29, 95% CI 1.03-5.09). Determinants of OS over ten years were age (hazard ratio 1.05, 95% CI 1.02-1.07), LVSI (hazard ratio 3.62, 95% CI 1.92-6.82) and the ER Allred score (hazard ratio 0.80, 95% CI 0.73-0.89). CONCLUSION: The histologic tumor type, ductal or lobular, determines DFS in hormone receptor-positive, HER2-negative, pT1-3 breast cancer besides the ER Allred score, LVSI and pN3.


Assuntos
Neoplasias da Mama , Carcinoma Ductal de Mama , Carcinoma Lobular , Humanos , Feminino , Carcinoma Lobular/patologia , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Resultado do Tratamento , Modelos de Riscos Proporcionais , Prognóstico , Estudos Retrospectivos
11.
J Extracell Vesicles ; 12(10): e12365, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37807017

RESUMO

Formation of extracellular vesicles (EVs) has emerged as a novel paradigm in cell-to-cell communication in health and disease. EVs are notably produced during cell death but it had remained unclear whether different modalities of regulated cell death (RCD) influence the biogenesis and composition of EVs. To this end, we performed a comparative analysis of steady-state (ssEVs) and cell death-associated EVs (cdEVs) following TNF-induced necroptosis (necEVs), anti-Fas-induced apoptosis (apoEVs), and ML162-induced ferroptosis (ferEVs) using the same cell line. For each RCD condition, we determined the biophysical and biochemical characteristics of the cell death-associated EVs (cdEVs), the protein cargo, and the presence of methylated ribosomal RNA. We found that the global protein content of all cdEVs was increased compared to steady-state EVs. Qualitatively, the isolated exosomal ssEVs and cdEVs, contained a largely overlapping protein cargo including some quantitative differences in particular proteins. All cdEVs were enriched for proteins involved in RNA splicing and nuclear export, and showed distinctive rRNA methylation patterns compared to ssEVs. Interestingly, necEVs and apoEVs, but strikingly not ferEVs, showed enrichment of proteins involved in ribosome biogenesis. Altogether, our work documents quantitative and qualitative differences between ssEVs and cdEVs.


Assuntos
Vesículas Extracelulares , Ferroptose , Vesículas Extracelulares/metabolismo , Necroptose , Proteínas/metabolismo , Apoptose
12.
Methods Mol Biol ; 2718: 253-269, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37665464

RESUMO

The identification of the molecular composition of extracellular vesicles (EV) by omics approaches, including proteomics, requires the separation of EV from non-EV confounding factors present in the source biofluid. In this protocol, we present the sequential implementation of density gradient ultracentrifugation and size-exclusion chromatography to prepare EV from cell-conditioned medium with high specificity and repeatability. This approach enables the recovery of intact purified EV suited for downstream functional assays and biomarker discovery by omics approaches.


Assuntos
Técnicas Citológicas , Vesículas Extracelulares , Vesículas Extracelulares/química , Fracionamento Celular , Meios de Cultivo Condicionados , Humanos , Técnicas Citológicas/métodos , Proteômica , Centrifugação com Gradiente de Concentração , Cromatografia em Gel
13.
J Extracell Vesicles ; 12(8): e12339, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37548263

RESUMO

Despite an enormous interest in understanding the bioactivity of extracellular vesicles (EV) in physiology and disease for the development of therapeutic applications, the impact of EV preparation methods remains minimally explored. In this study, we implemented density gradient ultracentrifugation combined with size-exclusion chromatography (DG-SEC), differential ultracentrifugation (dUC) and/or stand-alone SEC (sSEC) to fractionate media conditioned by different cancer cells and/or cancer-associated fibroblasts (CAF). EV-enriched but protein-depleted versus EV-depleted but protein-enriched DG-SEC fractions, and EV-containing dUC and sSEC preparations were quality controlled for particle number, protein concentration, selected protein composition and ultrastructure, characterized for their cytokine content, and dose-dependently evaluated for monocyte-derived dendritic cell (MoDC) maturation by measuring surface marker expression and/or cytokine secretion. EV preparations obtained by DG-SEC from media conditioned by different cancer cell lines or CAF, were depleted from soluble immune suppressive cytokines such as VEGF-A and MCP-1 and potently stimulated MoDC maturation. In contrast, EV-containing dUC or sSEC preparations were not depleted from these soluble cytokines and were unable to mature MoDC. Subsequent processing of dUC EV preparations by SEC dose-dependently restored the immunomodulatory bioactivity. Overall, our results demonstrate that method-dependent off-target enrichment of soluble cytokines has implications for the study of EV immunomodulatory bioactivity and warrants careful consideration.


Assuntos
Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Citocinas/metabolismo , Ultracentrifugação
15.
J Extracell Vesicles ; 12(5): e12315, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37202906

RESUMO

The analysis of extracellular vesicles (EV) in blood samples is under intense investigation and holds the potential to deliver clinically meaningful biomarkers for health and disease. Technical variation must be minimized to confidently assess EV-associated biomarkers, but the impact of pre-analytics on EV characteristics in blood samples remains minimally explored. We present the results from the first large-scale EV Blood Benchmarking (EVBB) study in which we systematically compared 11 blood collection tubes (BCT; six preservation and five non-preservation) and three blood processing intervals (BPI; 1, 8 and 72 h) on defined performance metrics (n = 9). The EVBB study identifies a significant impact of multiple BCT and BPI on a diverse set of metrics reflecting blood sample quality, ex-vivo generation of blood-cell derived EV, EV recovery and EV-associated molecular signatures. The results assist the informed selection of the optimal BCT and BPI for EV analysis. The proposed metrics serve as a framework to guide future research on pre-analytics and further support methodological standardization of EV studies.


Assuntos
Vesículas Extracelulares , Benchmarking , Biomarcadores
16.
J Nanobiotechnology ; 21(1): 157, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208684

RESUMO

BACKGROUND: Extracellular vesicles (EV) are extensively studied in human body fluids as potential biomarkers for numerous diseases. Major impediments of EV-based biomarker discovery include the specificity and reproducibility of EV sample preparation as well as intensive manual labor. We present an automated liquid handling workstation for the density-based separation of EV from human body fluids and compare its performance to manual handling by (in)experienced researchers. RESULTS: Automated versus manual density-based separation of trackable recombinant extracellular vesicles (rEV) spiked in PBS significantly reduces variability in rEV recovery as quantified by fluorescent nanoparticle tracking analysis and ELISA. To validate automated density-based EV separation from complex body fluids, including blood plasma and urine, we assess reproducibility, recovery, and specificity by mass spectrometry-based proteomics and transmission electron microscopy. Method reproducibility is the highest in the automated procedure independent of the matrix used. While retaining (in urine) or enhancing (in plasma) EV recovery compared to manual liquid handling, automation significantly reduces the presence of body fluid specific abundant proteins in EV preparations, including apolipoproteins in plasma and Tamm-Horsfall protein in urine. CONCLUSIONS: In conclusion, automated liquid handling ensures cost-effective EV separation from human body fluids with high reproducibility, specificity, and reduced hands-on time with the potential to enable larger-scale biomarker studies.


Assuntos
Vesículas Extracelulares , Humanos , Reprodutibilidade dos Testes , Fluxo de Trabalho , Vesículas Extracelulares/metabolismo , Proteínas , Biomarcadores/metabolismo
17.
J Extracell Vesicles ; 12(2): e12299, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36759917

RESUMO

Flow cytometry (FCM) offers a multiparametric technology capable of characterizing single extracellular vesicles (EVs). However, most flow cytometers are designed to detect cells, which are larger than EVs. Whereas cells exceed the background noise, signals originating from EVs partly overlap with the background noise, thereby making EVs more difficult to detect than cells. This technical mismatch together with complexity of EV-containing fluids causes limitations and challenges with conducting, interpreting and reproducing EV FCM experiments. To address and overcome these challenges, researchers from the International Society for Extracellular Vesicles (ISEV), International Society for Advancement of Cytometry (ISAC), and the International Society on Thrombosis and Haemostasis (ISTH) joined forces and initiated the EV FCM working group. To improve the interpretation, reporting, and reproducibility of future EV FCM data, the EV FCM working group published an ISEV position manuscript outlining a framework of minimum information that should be reported about an FCM experiment on single EVs (MIFlowCyt-EV). However, the framework contains limited background information. Therefore, the goal of this compendium is to provide the background information necessary to design and conduct reproducible EV FCM experiments. This compendium contains background information on EVs, the interaction between light and EVs, FCM hardware, experimental design and preanalytical procedures, sample preparation, assay controls, instrument data acquisition and calibration, EV characterization, and data reporting. Although this compendium focuses on EVs, many concepts and explanations could also be applied to FCM detection of other particles within the EV size range, such as bacteria, lipoprotein particles, milk fat globules, and viruses.


Assuntos
Vesículas Extracelulares , Citometria de Fluxo/métodos , Reprodutibilidade dos Testes
18.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36835174

RESUMO

Extracellular vesicles (EVs) have attracted great attention as potential biomarkers for cancer diagnostics. Although several technologies have been developed for EV detection, many of them are still not applicable to clinical settings as they rely on complex EV isolation processes, while lacking sensitivity, specificity or standardization. To solve this problem, we have developed a sensitive breast cancer-specific EV detection bioassay directly in blood plasma using a fiber-optic surface plasmon resonance (FO-SPR) biosensor, previously calibrated with recombinant EVs. First, we established a sandwich bioassay to detect SK-BR-3 EVs by functionalizing the FO-SPR probes with anti-HER2 antibodies. A calibration curve was built using an anti-HER2/Banti-CD9 combination, resulting in an LOD of 2.1 × 107 particles/mL in buffer and 7 × 108 particles/mL in blood plasma. Next, we investigated the potential of the bioassay to detect MCF7 EVs in blood plasma using an anti-EpCAM/Banti-mix combination, obtaining an LOD of 1.1 × 10 8 particles/mL. Finally, the specificity of the bioassay was proven by the absence of signal when testing plasma samples from 10 healthy people unknown to be diagnosed with breast cancer. The remarkable sensitivity and specificity of the developed sandwich bioassay together with the advantages of the standardized FO-SPR biosensor highlight outstanding potential for the future of EV analysis.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , Vesículas Extracelulares , Feminino , Humanos , Biomarcadores , Técnicas Biossensoriais/métodos , Neoplasias da Mama/diagnóstico , Ressonância de Plasmônio de Superfície/métodos
19.
Cancer Immunol Immunother ; 72(2): 475-491, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35960332

RESUMO

A phase II study (PRIMMO) of patients with pretreated persistent/recurrent/metastatic cervical or endometrial cancer is presented. Patients received an immunomodulatory five-drug cocktail (IDC) consisting of low-dose cyclophosphamide, aspirin, lansoprazole, vitamin D, and curcumin starting 2 weeks before radioimmunotherapy. Pembrolizumab was administered three-weekly from day 15 onwards; one of the tumor lesions was irradiated (8Gyx3) on days 15, 17, and 19. The primary endpoint was the objective response rate per immune-related response criteria (irORR) at week 26 (a lower bound of the 90% confidence interval [CI] of > 10% was considered efficacious). The prespecified 43 patients (cervical, n = 18; endometrial, n = 25) were enrolled. The irORR was 11.1% (90% CI 2.0-31.0) in cervical cancer and 12.0% (90% CI 3.4-28.2) in endometrial cancer. Median duration of response was not reached in both cohorts. Median interval-censored progression-free survival was 4.1 weeks (95% CI 4.1-25.7) in cervical cancer and 3.6 weeks (95% CI 3.6-15.4) in endometrial cancer; median overall survival was 39.6 weeks (95% CI 15.0-67.0) and 37.4 weeks (95% CI 19.0-50.3), respectively. Grade ≥ 3 treatment-related adverse events were reported in 10 (55.6%) cervical cancer patients and 9 (36.0%) endometrial cancer patients. Health-related quality of life was generally stable over time. Responders had a significantly higher proportion of peripheral T cells when compared to nonresponders (p = 0.013). In conclusion, PRIMMO did not meet its primary objective in both cohorts; pembrolizumab, radiotherapy, and an IDC had modest but durable antitumor activity with acceptable but not negligible toxicity.Trial registration ClinicalTrials.gov (identifier NCT03192059) and EudraCT Registry (number 2016-001569-97).


Assuntos
Neoplasias do Endométrio , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/tratamento farmacológico , Qualidade de Vida , Anticorpos Monoclonais Humanizados/uso terapêutico , Neoplasias do Endométrio/patologia
20.
J Thromb Haemost ; 20(11): 2679-2685, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36043239

RESUMO

BACKGROUND: Blood plasma is commonly used for biomarker research of extracellular vesicles (EVs). Removing all cells prior to analysis of EVs is essential. OBJECTIVES: We therefore studied the efficacy of the most commonly used centrifugation protocol to prepare cell-free plasma. METHODS: Plasma was prepared according to the double centrifugation protocol of the International Society on Thrombosis and Haemostasis (ISTH) in three independent studies. The concentrations of platelets, platelet-derived EVs, and erythrocyte-derived EVs were measured by calibrated flow cytometry. RESULTS: The mean platelet concentration ranged from 5.1 × 105 /ml to 2.8 × 107 /ml and differed 55-fold between studies. Thus, the ISTH centrifugation protocol does not remove all platelets and results in variation between studies. As the concentration of platelet-derived EVs and platelets correlates linearly (R2  = .56), and the volume fraction of EVs and platelets in plasma are similar, the presence of platelets affects downstream analysis. To remove platelets a 0.8-µm polycarbonate filter was used to lower the platelet concentration 146-fold (p = .0013), without affecting the concentration of platelet-derived and erythrocyte-derived EVs (p = .982, p = .742). CONCLUSIONS: To improve the quality of EV research, we recommend (1) measuring and reporting the platelet concentration in plasma used for EV research, or (2) removing platelets by centrifugation followed by filtration.


Assuntos
Vesículas Extracelulares , Trombose , Humanos , Plaquetas , Plasma , Citometria de Fluxo/métodos , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA